Prepared for

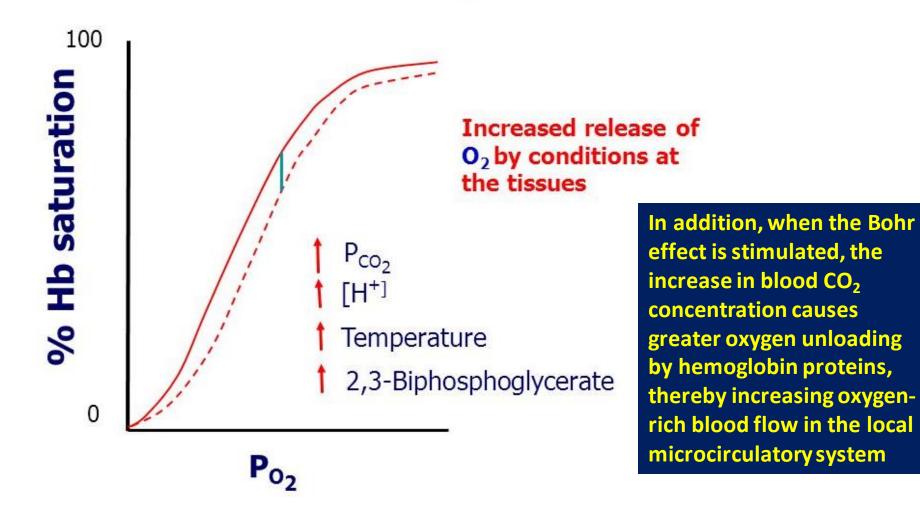
Efficacy of Transdermal CO₂ Administration Using a Deoxyhemoglobin Vasodilator Medical Device to Treat Diabetic Foot Ulcers

A preliminary study

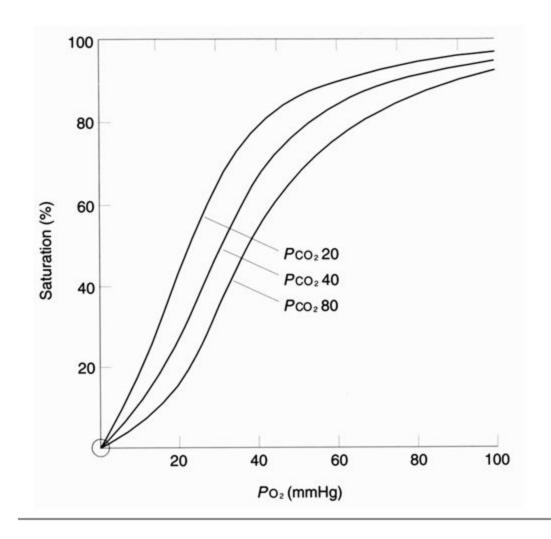
Ito PURUHITO, Chikita NUR RACHMI

Dept.Thoracic, Cardiac and Vascular Surgery Univ.Airlangga – Medical Faculty SURABAYA, INDONESIA

This study was supported partially by Circularity Healthcare USA for the supply of CO₂ Cartridges

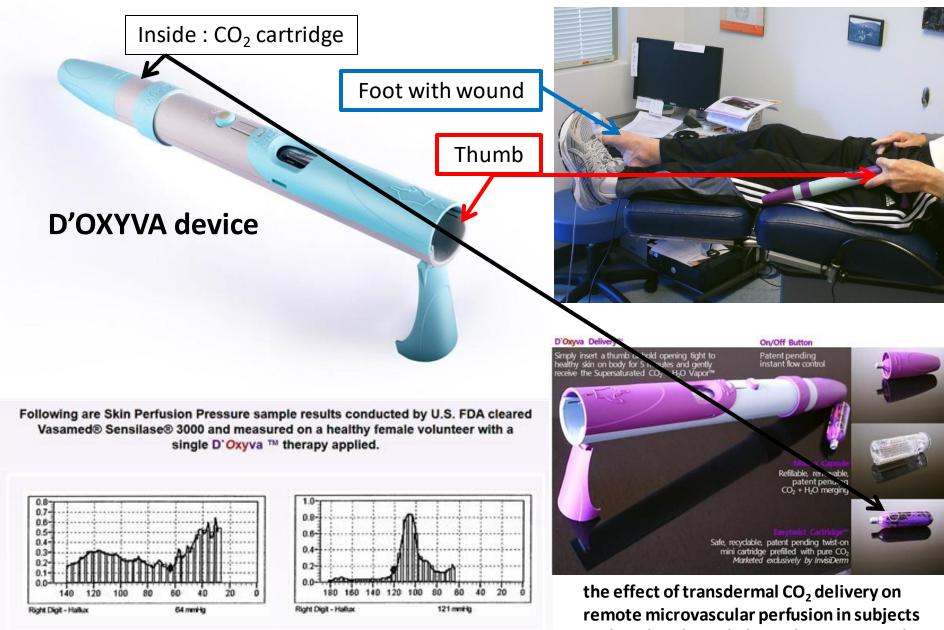

Scientific reasoning

- Introduction Medical gases have historically been delivered via the inhalation route of administration. However, in light of the physiology of human skin, it may be possible to deliver medical gases transdermally.
- Transdermal gas delivery is non-invasive and can interact with dermal capillary and cellular receptors near the skin, producing a desired systemic effect.
- The work (using transdermal CO2 device) ^(*) studied a novel method for boosting microcirculation using diffusive noninvasive transdermal delivery of a supersaturated solution of carbon dioxide (CO2) in water.


(*) Lee C. Rogers, D.P.M., Judy M. Muller-Delp, Ph.D., Topy A. Mudde, MSc.

Bohr Effect

A shift of the curve to the right:- The Bohr Effect



The Bohr effect

Three Oxygen Dissociation curves illustrating the Bohr Effect.

Increased carbon dioxide in the blood causes a right-shift in the curves, such that the haemoglobin more easily unloads the oxygen it is carrying.

5 minutes before D`Oxyva ™ therapy: Healthy capillary blood flow at 64 mmHg 2 minutes after D'Oxyva ™ therapy: 89% capillary blood flow increase from 64 to 121 mmHg the effect of transdermal CO_2 delivery on remote microvascular perfusion in subjects with and without diabetes by assessing skin perfusion pressure of the foot after bathing the thumb in CO_2 .

Measurement of PI (Perfusion Index) Masimo[®], Pulse Rate (PR), and O2-Sat (%SpO₂) by means of gadget (Android or Apple)

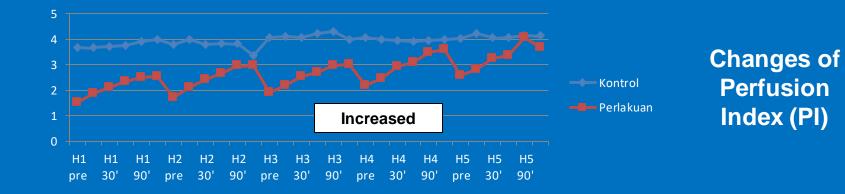
Aim of the preliminary study

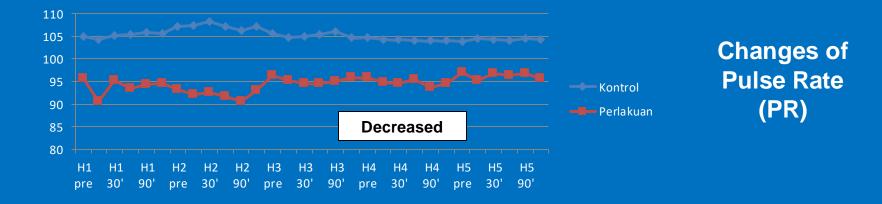
This clinical study was designed to observe 1) the effect of transdermal CO_2 administration using the D'OXYVA® medical device on peripheral capillary oxygen saturation (SpO₂), Pulse Rate, and perfusion index (PI) and 2) the efficacy of transdermal CO_2 administration to treat diabetic foot ulcers.

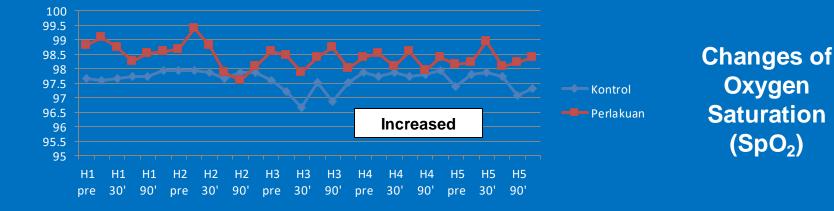
Table 1	. Wagner Ulcer Classification System	
Grade	Lesion	
1	Superficial diabetic ulcer	
2	Ulcer extension involving ligament, tendon, joint capsule, or fascia with no abscess or osteomyelitis	
3	Deep ulcer with abscess or osteomyelitis	
4	Gangrene to portion of forefoot	
5	Extensive gangrene of foot	

Patient's DFU treated : Wagner's Class 1 & 2

Variable	Control, n=15	Treatment, n=15	p-value
Gender; n(%)			0,109
- Male	2 (13,3)	7 (46,7)	
- Female	13 (86,7)	8 (53,3)	
Age (years); Mean±SD	55,13±6,39	58,07±7,79	0,269


Subject's characterisation


Variable	Control, n=15	Treatment, n=15	P-value
Hemoglobine (gram%); Mean±SD	9,93±1,66	8,56±1,99	0,052
O2-Saturation; Mean±SD	97,67±1,59	98,80±1,42	0,049
PR; Mean±SD	104,93±12,89	95,67±11,70	0,049
PI; Mean±SD	3,69±2,22	1,52±1,36	0,003


Subject's clinical condition

Variable	Pre	Post	p-value
Control, n=15			
O2-Saturation	97,67±1,59	97,33±2,06	0,430
PR	104,93±12,89	104,33±12,86	0,676
PI	3,69±2,22	4,15±2,03	0,309
Treatment, n=15			
O2-Saturation	98,80±1,42	98,40±1,24	0,395
PR	95,67±11,70	95,60±14,19	0,976
PI	1,52±1,36	3,68±1,89	<0,0001

DFU Wagner-2

5 days' after

Pre-

DFU Wagner-1

Pre-

5 days' after

Conclusion of the study for clinical use

- Application of transdermal CO₂ produces a remote vasodilation that may be mediated through release of a circulating humoral agent
- Transdermal Delivery of Carbon Dioxide Boosts Microcirculation (Lee C. Rogers 1, D.P.M., Judy M. Muller-Delp3, Ph.D., Topy A. Mudde2, MSc.)
- Impairments in microcirculation are detrimental to skin repair and regeneration
- the delivery system of transdermal carbon dioxide improves parameters of dermal microcirculation.
- using the device shows promise for improving the microcirculation in multiple disease states and may improve skin repair or **delayed wound healing.**

Second Study

AUTHORS Puruhito I ⁽¹⁾, Kiss N ⁽²⁾, Quintana-Ortiz RA ⁽³⁾, Soebroto H ⁽¹⁾, Sembiring YE ⁽¹⁾, Jayarasti K ⁽¹⁾, Phaleno PW ⁽¹⁾

Dept. Thoracic, Cardiac and Vascular Surgery, Dr. Soetomo General Hospital – Medical School Universitas Airlangga, Surabaya

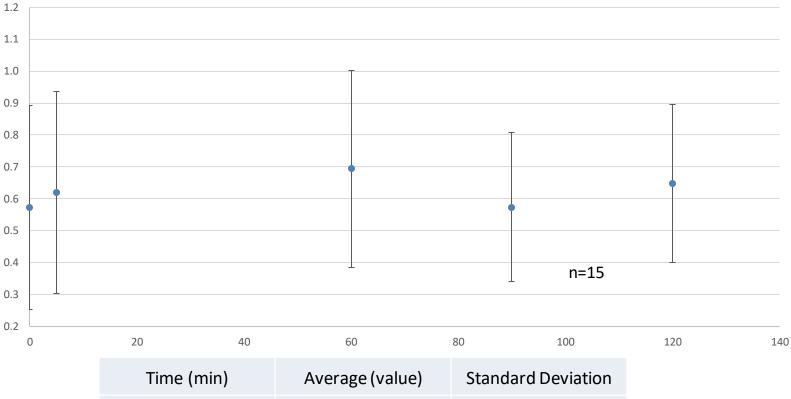
2) Circularity Healthcare, Pasadena, USA3) Circularity Healthcare, Biostatistician, USA

AIM OF THE STUDY :

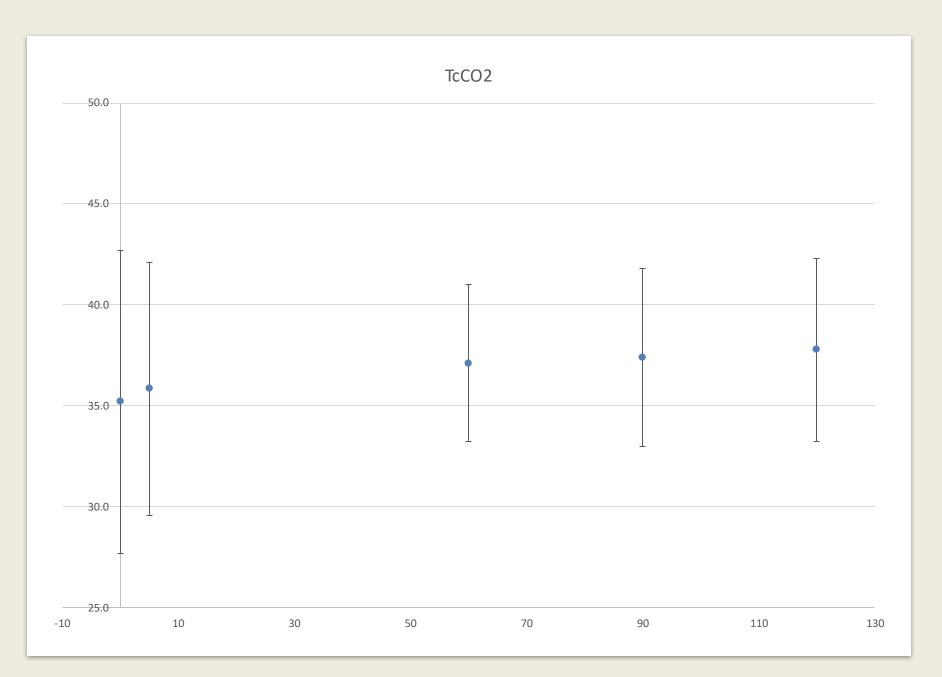
This clinical study was designed to (1) quantify the effect of transdermal CO_2 administration using the D'OXYVA[®] medical device on transcutaneous carbon dioxide $(tcPCO_2)$, peripheral capillary oxygen saturation (SpO_2), and perfusion index (PI) and (2) to evaluate the efficacy and safety of transdermal CO₂ administration to treat diabetic foot ulcers.

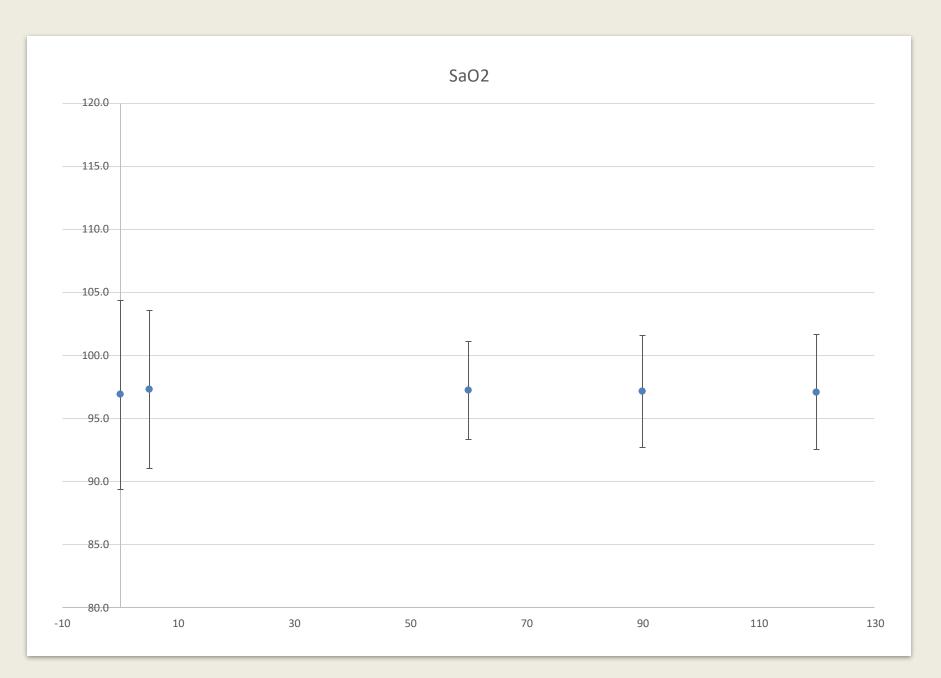
METHODS

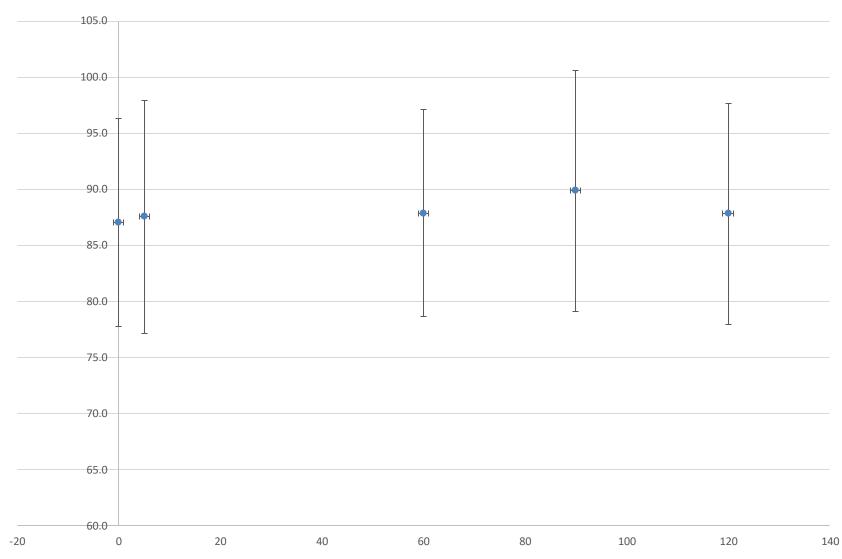
- Adults with clinically-confirmed type II diabetes mellitus (DM) and an active Wagner class 1-2 foot ulcer (≥ 30 days) were recruited to one of two cohorts.
- In cohort one, patients were given a 5-min transdermal application of CO₂ using D'OXYVA[®]; spO₂, tcPCO₂, and PI were measured at baseline and up to 120-min post-administration.
- In cohort two, patients were trained to self-administer CO₂ twice daily for 8 weeks. Each patient returned to the clinic twice-weekly to document the wound healing processes by a certified physician.


Table. 1		General characteristic	c of Group-1
		Ge	nder
N = 15	-	Male (N=9)	Female (N=6)
Age (average yrs)		54.3 (std <u>+</u> 8.0)	66.6 (std <u>+</u> 5.5)
DFU Wagner Class.			
	1	3 (33%)	1 (16.6%)
	2	6 (67%)	5 (83.4%)
Table 2		General abarratoriati	
Table. 2		General characteristic	c of Group-2 ender
Table. 2 N = 6			_
		Ge	nder
N = 6		Ge Male (N=2)	ender Female (N=4)
N = 6 Age (average yrs)	1	Ge Male (N=2)	ender Female (N=4)

RESULTS


- Fifteen and six patients in cohort one and cohort two, respectively, enrolled and completed the study. Following CO₂ administration, average PI was increased from baseline at all time points and maximally peaked 23% above baseline after 60 min (p<0.05).
 Average SpO₂ appeared to increase by ~0.5% 5-min post-administration, followed by a steady decline towards baseline; however, these results were not statistically significant from baseline (p>0.05). <u>tcPCO₂ and pulse rate were unchanged</u>.
- In cohort two, improved wound-healing processes were observed following the first day of CO₂ treatment. These improvements included the appearance of granulation tissue, clean and well defined ulcer borders and decreases in observable inflammation and edema. In one patient, <u>complete</u> <u>resolution</u> of a DM foot ulcer (Wagner stage 2) located on the great toe occurred after 3 weeks. <u>No adverse events or safety</u> <u>signals associated with use of the device were observed.</u>


Perfusion Index AFTER 0, 5, 60, 90 AND 120 MINUTES OF CO2 TRANSDERMAL DELIVERY WITH D'OXYVA APPARATUS


Perfusion Index (PI)

Time (min)	Average (value)	Standard Deviation
0	0.6	0.3
5	0.6	0.3
60	0.7	0.3
90	0.6	0.2
120	0.6	0.2

PR

Summary of the results

- The use of D'OXYVA[®] transdermal CO₂ delivery system seems to be a safe method with no adverse effect shown in this study
- An increase of perfusion index (PI) could be a way to boost the wound healing process
- This method could be recommended to be used in the treatment of diabetic foot ulcer

Future direction

- There appears to be a time-dependent effect, with the largest treatment affect occurring at 30 or 60 min post administration, depending on the day
- A larger sample is needed to generalize the study results to the general population. It did showed that there is a better outcome of the wound healing process as compared with the other group of patients
- Larger populations and assessing participants' daily general health experiences are required to support the potential of this medical device to prevent future diabetic foot

References

- 1. Lavery LA, Amstrong DG, Wunderlinch RP, Tredwell J, Boulton AJ. Diabetic Foot Syndrome : Evaluating the prevalence and incidence of foot pathology in Mexican American and non Hispanic whites from fiabetes disease management cohort. Diab Care 2003;26(5):1435-8
- 2. Bild DE, Selby JV, Sinnock P, Browber WA, Braveman P, Showstack JA. Lower extremity amputation in people with diabetes. Epidemiology and prevention. Diab Care 1989;12(1):24-31
- 3. Mayfield JA, Reiber GE, Sanders LJ, Janise D, Pogacg LM, Preventive Foot Care in People with Diabetes. Diab Care 2003;36(2):491-4
- 4. Boulton AJM, Kirsner RS, Viletkyte L. Neuropathic Diabetic Foot Ulcers. N Engl J Med 2004;351:48-55
- Bakker K, Apelqvist J, Lipsky BA, Netten VJJ. Prevention and Management of Foot Problems in Diabetes SED Practice based Guidance Documents and Recommendations. International of Diabetic Foot : Leiden: International Working Group on the Diabetic Foot 2015
- 6. Thomsen AM. The TcpCO2 handbook. Denmark : Radiometer Medical Aps 2012 p.1-102
- 7. Nam Han Cho. IDF Atlas Diabetes Atlas. Sevent Edition 2015. Available at : http://www.idf.org/diabetesatlas/introduction/summary
- 8. Guariguta L, Nolan T, Beagley J, Linnenkamp U, Jacqmain O. ID Diabetes Atlas. International Diabetes Federation 2013.
- 9. Enca. Diabetes still a major cause of death. Available at : https://www.enca.com/south-africa/diabetesstill-major-cause-death-sa
- 10. Weijkerhout N. International working group of diabetic foot. International concensus on the diabetic foot; Amsterdam : International Diabetes Feferation 2007
- 11. Game FL, Choosing for life or leg. Improving long term survival of the multicomplicated diabetic foot patient. 6th International symposium on the diabetic foot. Noordwijkerhout The Netherlands 2011

- 12. Ince P, Game FL, Heffcoate WJ. Rate of healing of neuropathic ulcers of the foot in diabetes and its relationship to ulcer duration and ulcer area. Diab Care 2007;330:660-3
- 13. Margolis DJ, Kantor J, Berlin JA. A meta analysisi : Healing of diabetic neuropathic foot ulcers receiving standart treatment. Diab Care 1999;5:692-5
- 14. Soewondo P. Prediksi Penyembuhan Luka Ulkus diabetik akut : Peran faktor rosoko klinis dan penanda fungsi vasodilatasi, kalsifikasi vaskular serta angiogenesis. Universitas Indonesia 2011
- 15. Yunir EM. Peran Faktor Metabolik, Neuropati Autonom, Inflamasi, Infeksi dan Hemostasis terhadap Oksigenasi Jaringan Serta Pengaruhnya Terhadap Proses Penyembuhan Luka Kaki Diabetik. Tesis Fakultas Kedokteran Universitas Indonesia 2016
- 16. Wagner FW. The Diabetic Foot. Orthopedics 1987;10(1):163-72
- 17. Conway KP, Harding KG. Wound Healing in the diabetic Foot. In : Bowker JH, Pfeifer MA, eds. Levin and O'Neals the Diabetic Foot. Mosby 2008 p. 319-37
- Adler AL, Boyko EJ, Ahroni JH, Smith DG. Lower Extremity Amputation in Diabetes., The independents effecvts of Peripheral Vascular Disease, sensory neuropathy and foot ulcers. Diabs Care 1999;22(7):1029-35
- 19. Altavilla D, Saitta A, Cucinotta D. Inhibition of Lipid peroxidation restores impaired vascular endothelial growth factor expression and stomulate wound healing and angiogenesis in the genetically diabetic mouse. Diabetes 2001;50 (3):667-74
- 20. Sheehan P, Jones P, Caselli. Percent change in wound area of diabetic foot ulcer over 4 week period is a robust predictor of complete healing in a 12 week prospective trial. Diab Care 2003;26(6): 1879-82
- 21. Synder RJ. Cardinal M, Dauphice DM. A Post hoc analysis of reduction in diabetic foot ulcer size at 4 weeks as a predictor of healing by 12 weeks. Ostomy Wound Manag 2010;56(3):44-50