Posted on Leave a comment

Have you heard of Tere’s inspiring diabetic story?

“My Doctor told me I have less than a year to live if I won’t let them amputate my leg, but I didn’t let them . . . here’s how I am still alive now!”

When doctors initially told 60-year-old Theresa “Tere” Schaufer that she had diabetes, she went into denial for 20 years.

“I was diagnosed with diabetes 20 years ago, and only when my doctor told me that they needed to cut my leg, did I realize that my diabetes was serious,” she says.

 

A major contributing factor

“Doctors told me the only way to survive this fight was to amputate my leg,” Schaufer says.  

She acknowledges that she had lived an unhealthy lifestyle for many years. Working in a restaurant as a cashier, she did very little exercise, ate fast food and drank sodas on a regular basis.

“If the doctor tells you you’re a diabetic, don’t ignore it. Don’t get to where I am. The sooner you accept things, the better it is for your health.”

Only after her doctor advised amputation did she realize the seriousness of her situation. Schaufer’s lifestyle had a hugely negative impact on controlling her diabetes. 

 

It was very painful!

Schaufer had puss from underneath her foot and necrotic toe. “After the doctor examined my foot, it was like decaying,” she says. “I couldn’t handle the pain. It was excruciating!” She was given less than a year to live because of her poor lifestyle.

 

I started to accept the situation.

Schaufer finally accepted her fate as a diabetic after the doctor told her that her leg would have to be amputated.

“I saw it coming. The pain was terrible. I could no longer handle it. At this point I was prepared; whatever came had to be.”

 

Unexpected turn of events

“I was browsing a support page I found on the web and read about a colleague’s experience with the microcirculation therapy she had tried. She noted that it had an amazing effect on her diabetic foot ulcer,” Schaufer says.

Right there on the support page, the woman raved, “There is this new technology you can buy online, D’OXYVA, which was voted one of the Top 10 Diabetes Care Solution Providers 2018! I didn’t have to amputate my leg because of this amazing product. In just four weeks, I can see my diabetic foot ulcer improving!”

“I read these words, and it gave me the hope I’d been praying for,” noted Schaufer.

She only had a month before her scheduled amputation, and without hesitation, she used the remaining days to try out D’OXYVA. She ordered the product online and closely collaborated with their in-house support.

“I was under D’OXYVA therapy for one month, taking it twice a day, once in the morning and once before bed as advised. It was very easy to use and non-invasive. In the first few days, I was skeptical as I wasn’t seeing any improvements, but I continued anyway and followed their suggested therapy guide,” Schaufer explains.

 

Thankful for D’OXYVA

When it was time for her to go back to her doctor and give her consent to amputate, her doctor was shocked to see her leg.

“What happened?” Those were the exact words my doctor asked upon seeing my leg after only a month. “Your wounds seemed to be healing from the inside,” my doctor said.

After a thorough check-up and the usual diagnostic check of my foot’s PI (perfusion index), he said the words that I never expected to hear. “We don’t need to amputate your leg anymore, but you need to continue whatever you’ve been doing for the past month.”

I then introduced him to D’OXYVA, and he was amazed by how this product had saved me.

 

Helping others

“I’m on my third month of D’OXYVA therapy, and it does amazing things for my health! I don’t think I have thanked D’OXYVA enough for this chance to live longer. I wouldn’t have the outlook on life that I have now,” Schaufer continues cheerfully.    

She is now also leading a healthy life. “This changed how I live my life, and I will continue sharing my experience as much as I can to help others.”

Schaufer often spends time with other “to-be-amputees” struggling to deal with their situation. “God gave me my situation to help others,” she maintains.

One of the ladies she counselled remarked how Schaufer had helped her tremendously. “She told me that I gave her her life back,” Schaufer says, breaking into tears.

“I’m in a way thankful for what I have been through with my diabetes because, without it, I wouldn’t have stumbled across my strength and my ability to help others.”

HOW CAN D’OXYVA HELP?

D’OXYVA is the only fully noninvasive, completely painless transdermal (over-the-skin) microcirculatory solution that has been clinically tested to significantly improve microcirculation.

The improvement of microcirculation, i.e., blood flow to the smallest blood vessels, benefits one’s health, immune system and overall sense of well-being in a variety of ways.

Posted on Leave a comment

Anesthesia, Microcirculation, and Wound Repair in Aging

Abstract

Age-related changes in skin contribute to poor wound healing after surgical procedures. Changes in skin with age include a decline in thickness and composition, a decrease in the number of most cell types, and diminished microcirculation, the process that provides tissue perfusion, fluid homeostasis, and delivery of oxygen and other nutrients. It also controls temperature and the inflammatory response. Surgical incisions cause further disruption of the microvasculature of aged skin; however, perioperative management can be modified to minimize damage to aged tissues. Judicious use of fluids, maintenance of normal body temperature, pain control, and increased tissue oxygen tension are examples of adjustable variables that support microcirculation. Anesthetic agents influence microcirculation in a number of ways, including cardiac output, arterial pressure, and local microvascular changes. The authors examined the role of anesthetic management in optimizing microcirculation and potentially improving postoperative wound repair in older persons.

Aged skin is at increased risk of poor postoperative wound healing. Changes in the cutaneous microcirculation with aging contribute to this risk. This review examines the role of anesthesia management in microcirculatory function.

SURGICAL wound repair is a major problem in the older population, who are at increased risk of wound dehiscence and infection. As a specific example, surgical site infections (SSIs) are common (approximately 500,000 cases annually in the United States), lead to worse patient outcome (patients who develop SSI are twice as likely to die), and are an enormous economic burden (1–10 billion dollars annually). Many factors contribute to age-related changes in skin5 and subsequent vulnerability to impaired wound healing and infection. Changes in skin with age (fig. 1) include a decline in epidermal and dermal thickness and composition, as well as a decrease in the number of most resident cell types. The dermal–epidermal junction is flattened and the microcirculation is diminished. The latter is defined as blood flow through arterioles, capillaries, and venules and is the key system that affects the entire skin surface. In the aging patient, the microcirculation in the skin is reduced by 40% between the ages of 20 and 70 yr. The microcirculation provides tissue perfusion, fluid hemostasis, and delivery of oxygen and other nutrients. It also controls temperature and the inflammatory response. Surgical incisions cause disruption of the microcirculation in the skin as manifested by local edema resulting from vasodilation and increased vascular permeability.

Fig. 1.
Numerous changes in skin with age contribute to impaired wound healing.

 

Perioperative management can be modified to optimize the microcirculation. Measures that support the microcirculation include careful use of fluids, normothermia, pain control, and smoking cessation. Factors that can be influenced by intraoperative management (judicious use of fluids, maintenance of normal body temperature, pain control, and increased tissue oxygen tension) have been suggested to be beneficial as well. Most anesthetic agents also influence the microcirculation: a reduction in cardiac output and arterial pressure decreases flow in the microcirculation, whereas anesthetic-induced local microvascular changes and vasodilatation can increase perfusion. Optimization of these variables plays an important role in enhancing the microcirculation in all patients, but is especially relevant if modifications could improve postoperative wound healing in the older population.

In this review, we will use skin as a representative organ to describe age-related changes that negatively affect the microcirculation and have subsequent impacts on wound healing and the incidence of postoperative infection. We will then examine the role of anesthesia management in minimizing detrimental effects on the microcirculation. A greater understanding of these variables could promote improvements that lead to better outcomes with respect to wound repair in older patients.

Summary of Wound Repair and Aging

It has been nearly a century since it was noted that the rate of cutaneous scar formation after a wound is inversely related to the age of the patient. Four decades ago, it was observed that older age was associated with an increased risk of postoperative disruption of the surgical wound, leading to higher mortality. Recent data suggest that in patients older than 65 yr, development of SSI is associated with a two-fold increase in cost and a staggering four-fold increase in mortality.

Wound healing ensues via a sequential chain of events (with variable overlap) that includes inflammation, tissue formation, and remodeling (fig. 2). Circulating factors have a pivotal role in each of these phases. Accordingly, as we will discuss below, immediate changes in the microcirculation influence each stages of the wound-healing response in aging. As human data is lacking, we have taken data from established animal models of aging. Although animal models are not uniformly predictive of responses in human tissues, several animal models of wound healing are generally accepted.

Fig. 2.

The stages of wound healing are a sequential chain of events that include: (A) inflammation, (B) proliferation and granulation tissue formation, and (C) extracellular matrix (ECM) deposition and tissue remodeling. PDGF = platelet-derived growth factor; TGF-β1 = transforming growth factor-β1; TNF-α = tumor necrosis factor-α; VEGF = vascular endothelial growth factor.

 

Summary

Nearly every anesthesiologist who provides care to adults will participate in the care of geriatric patients. A growing older population is undergoing surgical procedures that are increasing in number and complexity. Poor healing of surgical wounds is a major cause of morbidity, mortality, and substantial economic burden. Wound healing is dependent on the microcirculation that supplies the incision area. Measures that support the microcirculation during the perioperative period have a profound effect on wound healing. Some measures such as maintenance of normal body temperature and control of postoperative pain are supported by ample evidence and have been implemented in routine clinical care. Other measures, for example, the choice of anesthesia technique and use of opioids are supported by basic research but need further clinical studies. A better understanding of the effect of aging and anesthesia on the microcirculation can potentially assist in improving postoperative wound repair, thereby benefiting a growing older population.

 

The Surgical Context of Wound Repair and Aging

Measures that support the microcirculation improve wound repair, thereby reducing the risk of postoperative dehiscence and infection.52General preoperative measures such as smoking cessation and optimal management of comorbid medical conditions have been reviewed in other contexts.53,54 For the purpose of this review, we will focus on interventions in the perioperative setting.

Oxygen Administration

Wound healing is dependent upon adequate levels of oxygen.55 Oxygen interacts with growth factor signaling and regulates numerous transduction pathways necessary for cell proliferation and migration.56 It is also an indispensable factor for oxidative killing of microbes.57 Consequently, the effects of oxygen tension on the outcome of surgical wounds have been best studied in the context of postoperative infection. Resistance to surgical wound infection is presumed to be oxygen dependent—with low oxygen tension viewed as a predictor of the development of infection,56 particularly when subcutaneous tissue oxygenation (measured by a polarographic electrode) decreases to less than 40 mmHg.58

In two recent meta-analyses, one found that perioperative supplemental oxygen therapy exerts a significant beneficial effect on the prevention of SSIs,59 whereas the other suggested a benefit only for specific subpopulations.60 Although most authors suggest that supplemental oxygen during surgery is associated with a reduction in infection risk,61,62 others propose it may be associated with an increased incidence of postoperative wound infection.63Notably, in the latter report, the sample size was small and there was a difference in the baseline characteristics of the groups. A prospective trial randomizing patients to either 30 or 80% supplemental oxygen during and 2 h after surgery did not find any difference in several outcome measures including death, pulmonary complications, and wound healing.64 Of note, the administration of oxygen to aged subjects may be limited by the finding that although arterial oxygen tension did not decrease with age, there was reduced steady-state transfer of carbon monoxide in the lungs.65 This indicates that oxygen transport could be diffusion-limited in older subjects, especially when oxygen consumption is increased. Furthermore, longitudinal studies of five healthy men over 3 decades showed impaired efficiency of maximal peripheral oxygen extraction,66 suggesting that tissue oxygen uptake is reduced in the aged subjects.67 This likely reflects a decrease in the number of capillaries as well as a reduction in mitochondrial enzyme activity.68 Animal models (rabbit69 and mouse69,70 ) have suggested that aging and ischemia have an additive effect on disruption of wound healing. Consequently, the potential benefit of increasing tissue oxygen tension during surgical wound repair in older patients should be further evaluated.

 

 

Reference: http://anesthesiology.pubs.asahq.org/article.aspx?articleid=1917910

Posted on Leave a comment

Why post-menopausal women are prone to heart attack

Why post-menopausal women are prone to heart attack Read more: https://lifestyle.inquirer.net/296431/post-menopausal-women-prone-heart-attack/#ixzz5lzYlOezl Follow us: @inquirerdotnet on Twitter | inquirerdotnet on Facebook

Recently we had a female patient in her early 60s who suffered a heart attack and fortunately survived it.

All the time, she had been accompanying her husband to regular check-ups on his heart problem, without realizing she herself was a walking time bomb.

She has been a smoker most of her adult life. She has a strong family history of cardiovascular disease (CVD), with two male siblings undergoing heart bypass surgery in their early 50s.

Her blood pressure (BP) went on upward trend after menopause, with high cholesterol levels.

She showed no symptoms so she thought she was just fine, until she woke up in the middle of the night with severe chest tightness and shortness of breath.

She was rushed to the hospital, had an immediate declogging of the heart artery through angioplasty, and a small scaffolding-like metal called stent was inserted to keep the culprit coronary artery patent.

The same story happens so many times. Wife is so concerned about her husband with a heart problem and she neglects to have herself checked, or make sure that her lifestyle is not conducive to develop CVD.

Before menopause, women are protected by estrogen, the female reproductive hormone. This hormone has been shown to have a beneficial or cardioprotective effect on the inner layer of artery wall called endothelium.

After age 50

Endothelial dysfunction triggers the start of the atherosclerosis, which is the progressive narrowing of the artery. Estrogen prevents endothelial dysfunction, and helps maintain the flexibility of the blood vessels.

Flexible arteries can relax and expand to accommodate more blood and enhance the blood flow or circulation.

The onset of menopause is usually after the age of 50 (52 to 54 years of age on average). There are some who experience early menopause, signaled by the cessation of the monthly period at a much earlier age, even before age 40.

After menopause, estrogen decreases significantly and the heart protection is almost completely gone around eight to 10 years after menopause. This is usually when women are in their late 50s or early 60s.

Hence, the risk of developing a stroke, or heart attack, may increase and become higher in women compared to men at this age.

For those who have menopause at an early age, the increase in cardiovascular risk may occur at a much earlier age, when the women are just in their late 40s or early 50s.

Ovarian failure

The common cause is premature ovarian failure, but it may also be caused by damage to the ovaries as a result of cancer therapy and/or radiation treatments.

Another cause could be surgical removal of the ovaries if tumors in the female reproductive organs are diagnosed at a younger age.

The symptoms of premature menopause are pretty much the same as regular menopause, and include hot flashes, emotional instability or mood swing, vaginal dryness, decreased memory or comprehension, decreased libido or sex drive, and insomnia.

We have to clarify that menopause, by itself, does not cause CVD. It’s just that the levels of the heart-protective female hormones, particularly estrogen, decrease, and risk factors increase around the time of menopause.

These are increasing BP, high LDL (bad cholesterol) level, and low HDL (good cholesterol level. The triglyceride level, another bad type of fat, also increases after menopause.

A reckless lifestyle in the form of a high-carb and high-fat diet, being sedentary, smoking, and other unhealthy practices —which women could have earlier in life—starts to take its toll after menopause.

Guidelines from various heart associations remind women to really take stock of their health when they’re reaching menopause, so they can avert serious complications.

Since the cardiovascular risk in women peaks around eight to 10 years after the onset of menopause, women who are at high risk could be identified so that they could be treated more aggressively and monitored closely, preventing the complications which could occur years later.

A recently published study suggests that a relatively higher level of the male hormone called androgen or testosterone in postmenopausal women is associated with increased risks of cardiovascular complications.

The study, published in the Journal of the American College of Cardiology, followed up 2,800 postmenopausal women initially free of CVD. The women had their sex hormone levels measured at baseline.

The researchers reported that during an average of 12- year follow-up, CVD was diagnosed in 283 participants, plus clogging of the heart arteries (coronary heart disease or CHD) in 171, and heart failure in 103.

Adjustments were made to discount the effect of conventional risk factors and hormone therapy. The following findings were reported:

Male hormone

Higher total testosterone (male hormone)/estradiol ratio was linked with significantly increased risks for all cardiovascular outcomes.

Higher total testosterone appeared to significantly increase risks for CVD and CHD.
Higher estradiol (female hormone) was associated with significantly lower CHD risk, reaffirming its heart protective effect.

Does this study suggest that we should give post-menopausal women estrogen hormone therapy to prevent CVD or CHD?

I don’t think there’s good data to support that recommendation. There are also potential complications of aggressive hormone therapy which doctors are wary about.

The importance of this study is that we could identify the post-menopausal women who are at risk of suffering potentially serious cardiovascular complications, and implement risk-reducing strategies such as end to smoking, regular exercise and balanced diet.

Which type of diet is really good remains a big issue, in view of various fad diets claiming cardiovascular benefits.

The American Heart Association and Philippine Heart Association recommend eating a balanced diet consisting of: fruits, vegetables, whole grains, low-fat dairy products, poultry, fish and nuts, with less red meat and minimal sugary foods and beverages.

Aside from a healthy diet and lifestyle, adequate control of elevated BP is recommended; as well as the use of cardioprotective drugs like statins even if the cholesterol levels are not that high.

The important thing, too, is to get rid of the misconception that only men are vulnerable to heart disease, and women are spared from them.

A change of this wrong mindset is necessary so that the beloved women in our lives are not deprived of the medical care and attention they need to prevent heart attack, stroke and other cardiovascular complications.

HOW D’OXYVA CAN HELP?

D’OXYVA is the only fully noninvasive, completely painless transdermal (over-the-skin) microcirculatory solution that has been clinically tested to significantly improve microcirculation.

The improvement of microcirculation, i.e., blood flow to the smallest blood vessels, benefits one’s health, immune system and overall sense of well-being in a variety of ways.

Posted on Leave a comment

Being mindful of symptoms

LEWISTOWN–Dr. Maya Lichtenstein, neurologist at Geisinger-Lewistown Hospital, said that there are a myriad of potential symptoms that could be signs of a stroke. “Any sudden changes,” said Lichtenstein, “go the E.R.”

A stroke, according to Liechtenstein, is either the result of not enough blood flow to the brain, plaque in the blood vessels or heart, each resulting in a clot, or a hemorragic bleed, resulting in a bursted blood vessel in the brain. Classic symptoms of a stroke include numbness, tingling, weakness on one side of the body and changes in speech, but other sudden changes in in understanding language, vision, vertigo or clumsiness can also be symptomatic.

“It depends on what part of the brain is damaged,” said Lichtenstein.

Treatment options for a stroke vary, depending on the type of stroke.

“If you get seen fast enough,” said Lichtenstein, for a clot, a “clot-busting medication, a form of blood thinner” can be administered via I.V. A thrombectomy, a procedure, not an operation, said Lichtenstein, is another treatment option, similar to a cardiac catheterization. A bleeding stroke often leads to lowering the patient’s blood pressure and surgically relieving pressure on the brain. Taking aspirin can also treat a stroke.

Post-stroke, Liechtenstein said that rehabilitation is important, including physical, occupational, speech, and cognitive therapies. “Aggressive therapy can continue to improve people’s symptoms,” said Lichtenstein. “Everyone thinks they’re better if they can move their arms and legs.” Lichtenstein also encourages stroke patients to be aware of their mood and possible depression, encouraging them to accept all the help available.

To avoid a stroke, Liechtenstein said patients should see their doctors regularly for preventive care and that leading a healthy lifestyle is the key, including regular exercise to keep up the heart rate and eating a diet rich in fresh fruit and vegetables, lean proteins and whole grains. Lichtenstein also encourages patients to keep control of their vascular issues, such as high blood pressure and diabetes, as well as to quit smoking, if they smoke.

Posted on Leave a comment

Diabetes – Understanding a Debilitating Disease and Its Complications

by Dr. James O.

Honors in Epidemiology, Ophthalmology Electives and Albert Einstein College of Medicine

A Sad Case Struggling with Diabetes – Most people remember the popular movie Animal House and would recognize the popular character Flounder, who was played by the actor Stephen Furst. A recent article in “PeopleCelebrity” (people.com) is useful, for it describes Furst’s lackadaisical attitude toward diabetes, which eventually killed him at the age of 63.

According to the article, both of Furst’s parents died from diabetes-related complications when he was only 16 years old. Several weeks later, Furst himself was diagnosed with diabetes, but he basically ignored his condition, stating: “I went into denial…I didn’t realize the long-term effects.”

Unfortunately, after many years spent battling obesity and diabetes, Furst died on June 16, 2017 from “complications of diabetes.”

What Is Diabetes Mellitus – Diabetes mellitus is a devastating chronic illness that can have horrific and debilitating consequences. This condition, if left untreated, can lead to amputations of multiple limbs, blindness, kidney failure, heart attacks, strokes, hypertension, dental disease, poor wound healing, impotence, loss of sensation in limbs, and many other serious health conditions.

Definition – There are three general types of diabetes. Diabetes mellitus type one, which is also called juvenile diabetes, is usually diagnosed in childhood and accounts for approximately 5% of cases of diabetes. This type of diabetes is usually caused by the body’s inability to produce insulin. Diabetes mellitus type 2 is the most common type of diabetes; it involves an elevation of blood-glucose levels in adults.

This can be due either to the lack of production of the hormone insulin by the pancreas or to the development of a condition called insulin resistance, in which the body’s cells no longer react normally to insulin, thereby preventing insulin from transporting glucose from the blood into the cells. The third type of diabetes is gestational diabetes, which refers to the development of high blood-sugar levels during pregnancy.

Statistics – According to Healthline (healthline.com), 29.1 million people in the United States have been diagnosed with diabetes at a cost of 245 billion dollars per year in health expenses (in 2012), with an estimated 8.1 million more people unaware that they too have the condition. Furthermore, in the United States, approximately 1.4 million new cases of diabetes are diagnosed every year. Worldwide, “[d]iabetes kills 1.5 million people every year” (healthline.com).

Risk Factors – Risk factors for diabetes mellitus include obesity, smoking, (advanced) age, sedentary lifestyle, positive family history, poor diet, elevated cholesterol and triglycerides, and hypertension. Also, African Americans, Native Americans, Asian Americans, Pacific Americans and Hispanic Americans all have an increased risk of developing diabetes.

Warning Signs of Diabetes – Common symptoms of diabetes include severe thirst, frequent urination, dry mouth, intense hunger, blurred vision, poor healing of wounds, dry and itchy skin, and yeast infections.

Complications – One of the major complications of diabetes is damage to what is called the body’s “microcirculation.” This term refers to the circulation of blood in the smallest blood vessels, which are composed of terminal arterioles, capillaries, and venules.

The arterioles (tiny arteries) carry oxygenated blood to the capillaries, where oxygen is then transported to the tissues. The venules (tiny veins) carry deoxygenated blood and C02 from the capillaries to the larger veins.

It is critical for microcirculation to work optimally because its function is critical to the regulation of blood flow, tissue perfusion, normal blood pressure, and normal oxygen delivery and cellular-waste removal.

Studies have shown that early in the course of diabetes, changes begin to occur, namely damaging and thickening the “basement membranes” of microcirculation. This causes alterations in blood-flow properties, alterations in oxygen transport, and changes in homeostasis.

These changes in blood supply, tissue perfusion, and oxygen delivery eventually lead to a progressive loss of nerve-fiber function, causing neuropathy, chronic pain, and numbness.

The damage to microcirculation also causes peripheral vascular disease, which can lead to tissue necrosis, nonhealing ulcers, gangrene, and eventual limb amputation. It is estimated that 2 to 6% of patients with diabetes will develop a diabetic foot ulcer (DFU) that eventually becomes infected. Infected DFUs, in turn, can lead to foot or leg amputation, with 50% of those with amputations dying within 5 years.

Diagnosis – Diabetes can be diagnosed using several common blood tests or urinalysis revealing elevated levels of glucose. A fasting blood sugar over 125 mg/dl (for reference, the normal value is less than 100 mg/dl) may indicate diabetes; a Hgb A1C blood test with a value over 5.7%, which measures average blood-sugar levels over a 3-month period, may also indicate diabetes. Another valuable diagnostic test is the glucose tolerance test used to measure blood-sugar levels 3 hours after oral administration of a sugary syrup.

Traditional Treatments – First-line traditional treatment of diabetes usually involves weight loss, a healthy diet low in carbohydrates and high in fruits and vegetables, and increased exercise for at least 20 minutes 3 times a week.
If diet and exercise are not sufficient to lower blood sugar to normal levels, then medication may be necessary. The first medication usually administered is metformin. Metformin, also known as Glucophage, is an oral medication usually taken twice per day; it works by decreasing the level of sugar produced by the liver and by increasing cells’ sensitivity to insulin. It also lowers the amount of glucose absorbed by the intestines.

Since metformin is metabolized by the liver, if someone has decreased liver function caused by liver disease, this may lead to a buildup of metformin, in turn inducing lactic acidosis, which can cause severe medical conditions and even death.

In the same way, since Metformin is excreted from the body by the kidneys, those with kidney disease and/or lowered kidney function are also at risk of lactic acidosis when taking metformin.

Other types of oral medications are also available to treat diabetes. If these medications fail, daily insulin administration can be given either through injections, inhalation, or an insulin pump.

Traditional treatments of diabetic vascular disease causing impaired circulation include revascularization surgery and angioplasties. Treatment of the tingling, numbness, and sharp pain from diabetic neuropathy include medications such as gabapentin (Neurontin), pregablin (Lyrica), and the antiseizure medicine Tegretol.

Alternative treatments for diabetic neuropathy include Chinese medicine, acupuncture, aromatherapy, massage therapy, reflexology, homeopathy, and biofeedback.

Another treatment that has shown great promise both for the treatment of diabetic neuropathy and diabetic microvascular disease is D’OXYVA. This is a noninvasive, nonopioid transdermal delivery system of medical carbon dioxide (C02) and water vapor that boosts microcirculation, balances the sympathetic and parasympathetic nervous systems, lowers blood pressure, decreases chronic pain, promotes healing of wounds and ulcers, and helps prevent amputations.

D’OXYVA improves blood circulation by means of a transdermal transfer of C02 using a transmission device placed over the thumb for a 5-minute period.
Numerous studies have shown “sustained, remote vasodilation and decreased systolic blood pressure” with the use of D’OXYVA. This is because bathing the tissues in C02 stimulates vasodilation in the periphery of the body, thereby improving circulation, blood flow, and oxygenation levels.

In one particular case, a male patient suffering severe diabetic neuropathy and intractable ulcers and open sores on his legs, along with hypertension and an inability to sleep due to severe pain, was placed on D’OXYVA via his thumb for 5 minutes twice a day for 6 weeks.

By the end of the 6-week period, the patient reported a significant decrease in pain; he reported being able to sleep through the night for the first time in years and reported that most of his leg wounds had healed. In addition, his blood pressure dropped from 188/130 to 135/95 within 30 minutes of each application.

Summary – Diabetes is an insidious chronic condition that devastates both patients and families. Increased awareness and preventive measures, such as controlling diet and increasing regular exercise, can encourage weight loss and hopefully prevent the development or worsening of diabetes and the need for oral medications or treatment with insulin. In addition, new advances in therapy such as D’OXYVA offer a noninvasive, transdermal, low-cost, and very effective alternative to help stop the intractable chronic pain of diabetic neuropathy and to help prevent limb amputations.

Posted on Leave a comment

Controlling blood sugar important for diabetics

 

Diabetes mellitus is a group of diseases characterized by abnormal metabolism of carbohydrates. In general, diabetes is classified in

Type I in which there is absolute insulin deficiency due to destruction of the beta cells of the pancreas and Type II, characterized by hyperglycemia due to variable degrees of insulin deficiency and resistance. Ninety percent of all cases of diabetes are Type II, which plays a significant role.

Diabetes is quite common: 9 percent of the American population suffers from diabetes. This number is much higher in our corner of the world.

Diabetes affects the micro and the macro circulation. Damage to the micro circulation produces eye and kidney disease and neuropathy whereas damage to the macro circulation produces coronary and peripheral arterial disease.

Diabetics not only have a higher prevalence of coronary artery disease but this tends to be more extensive and associated with a higher probability of heart attacks (of which 25 percent of them will occur without pain). Diabetes doubles the mortality in men and triples it in women.

Diabetes is not only an independent risk factor for cardiovascular complications but it is also associated with other risk factors such as hypertension, obesity, lipid abnormalities and elevated fibrinogen.

Control of the blood sugar is important in Type I and II diabetes mainly because of benefits in the micro circulation; however strict glycemic control to benefit abnormalities of the macro circulation (heart attacks, amputations and peripheral artery disease) has not been documented in Type II diabetes.

The American Diabetes Association and the American Heart Association recommend the following approach to prevent complications:

>> Keep blood pressure less than120-130/80 mmHg.

>> Low carbohydrate and low fat diet, weight loss and physical exercise.

>> Statins (Crestor, Lipitor at a maximal tolerated dose) if there is a prior history of cardiovascular disease. If there is no prior history of cardiovascular diseases then statins are recommended in men with one additional risk factor and in women with two or more.

>> Keep HbA1C less than 6.5 percent.

>> Angiotensin converting enzyme inhibitors should be used regardless of the blood pressure.

>> Aspirin in high risk individuals (weak recommendation)

>> Smoking cessation.

>> Flu and pneumococcal vaccination.

>> Routine stress testing in asymptomatic individuals is not recommended.

 

HOW D’OXYVA CAN HELP?

D’OXYVA is the only fully noninvasive, completely painless transdermal (over-the-skin) microcirculatory solution that has been clinically tested to significantly improve microcirculation.

The improvement of microcirculation, i.e., blood flow to the smallest blood vessels, benefits one’s health, immune system and overall sense of well-being in a variety of ways.

Posted on Leave a comment

Breaking News from the PWCS Regional Conference

Following Successful Wound Healing Pilot Study, Circularity Launches Multicenter Clinical Trials, Business Initiatives with Influential Experts Across the Region

The Philippine Wound Care Society is a non profit, non stock, SEC registered organization. It was founded on September 09, 2009 with the purpose of improving the wound management in the Philippines through education. The society which is composed of physicians from different specialty groups and allied services (wound care nurse, physical therapy) brings together professionals involved in wound care.
 
The organization held its 1st regional meeting last February 26-27, 2015 at Cebu City Philippines. InvisiDerm’s CEO, Norbert Kiss and Senior Sales and Marketing Manager, Jennifer Rose Boadilla were invited by the President of the organization, Dr. Martin Anthony A. Villa and got the chance to meet some of the most influential cardiovascular and wound care KOLs at the said event.
 
The event was professional and had overwhelming participation exceeding the initially registered numbers. The speakers and their presentations were high quality and informative showcasing the latest in technologies and approaches to wound management.
 
We are glad to announce that InvisiDerm has secured some of the most influential cardiovascular and wound care KOLs from Taiwan, Singapore, Japan, Korea, Philippines and a few other countries via strategic relationships at this Philippine Wound Care Society Regional Meeting. In addition, a protocol for a comprehensive multicenter study coupled with diagnostics for diabetic foot wound healing on hundreds of subjects at leading hospitals, and an academic level study into the biochemical properties of D’OXYVA in wound healing, and a study for erectile dysfunction in diabetics was finalized, agreed and initiated with several KOLs based on the successful pilot study conducted by Dr. Harikrishna R. Nair at Hospital Kuala Lumpur, Malaysia. The quality of life benefits for patients such as significantly improved sleeping, eating, mood and pain makes D’OXYVA a distinct winner besides being noninvasive and fast without negative side effects. Furthermore, InvisiDerm has met regional directors of several leading wound care products multinationals and their distributors for in-depth private discussions about business models and development challenges across Asia. Circularity is clearly a leader in a number of aspects if not most. Special thanks to the team at Getz Bros. Philippines for their warm hospitality.
Posted on

Improved Microcirculation Against Diabetes, Stroke and Several Other Diseases

Exercise has been shown to protect against diabetes, stroke and several other diseases and to improve our moods.

But does it also make us more likely to engage in other activities? Do people who exercise tend to have better social lives or achieve more of their goals?

All clinical evidence so far validates that the science of exercise physiology best explains the outsized and unmatched vast health benefits of D’OXYVA® (deoxyhemoglobin vasodilator) and opens up entirely new ways of thinking about the treatment of the underlying causes of the most severe and widespread medical conditions.

Posted on

D’OXYVA as endorsed by Dr. Stephen Pfeifer

I was introduced several years ago to the transdermal COD’OXYVA® delivery system and had the chance to utilize this modality in my practice as well as see the benefits noted by other clinicians who have started implementing the protocols. I was initially skeptical that such an affordable and simple system could have such profound health benefits. But after witnessing improvements in blood pressure, chronic venous insufficiency, diabetic wound healing, mood, and athletic performance enhancement, I realized that this treatment has the potential to help millions of patients with chronic health conditions. So, like most scientists, I began to investigate the reasons why this technology could be so effective.

Could it be possible that one of the main causes of most of our patients’ health problems is rooted in physiologic imbalances in the autonomic nervous system and microcirculation? Have we clinicians been chasing imperfect treatment options with medications and interventions that may certainly ameliorate symptoms initially, but which fail to address critical root causes of physiologic dysfunction and dysregulation?

There is an increasing consensus that microcirculation is critical in many ways. Our vascular system works in such a way that the great arteries have little impact on blood pressure, but small ones control almost 70% of the blood-flow resistance. Each adult organ can have more that 2 miles of capillaries inside it. Each capillary bed is in charge of exchanging small molecules between organ cells and the blood to maintain a healthy cell microenvironment or a state of homeostasis. The vascular system reacts to the concentration of metabolism’s by-products by deciding where to allocate resources and remove waste. However, with time and the accumulation of microcirculation damage due to bad health care habits, poor diet, and sickness, our bodies lose their ability to maintain homeostasis, resulting in poor wound healing, pain, infections, and so on. In other words, the microcirculation system helps our bodies maintain uninterrupted blood flow where it is needed the most.

Another overlooked system is the autonomic nervous system. Many books have been written in the functional medicine arena regarding the concept of adrenal exhaustion, as holistic doctors are realizing that this fundamental imbalance contributes to so many health conditions today. Today, we are bombarded with bad news on TV, we have work and financial challenges, and we have constant interruptions from our cell phones and emails. This constant attack on our survival cortisol hormones can be overwhelming. In functional medicine, we can even document this phenomenon with salivary cortisol hormone levels measured 4­–6 times per day. Typically, we see three progressive levels at play. The adrenal system starts as stressed and wired, then progresses to stressed and tired, followed by burned out and exhausted. At each level, this autonomic imbalance takes its toll on our health. Mother nature provided us with a wonderful adaptive capability to mount a stress response when, in the caveman days, we were running from a pack of wolves. It diverts all energy away from the parasympathetic system (rest and digestion) to a sympathetic response (fright and flight) so we can respond physically, using muscle strength, increased heart rate, and increased cardiac output to respond to a physical challenge. After the challenge is gone, the body should return to homeostasis and a calming parasympathetic mode for rest and digestion. Well, that is just not happening in today’s world, as we are in constant overdrive trying to escape the pack of wolves. So, we primary care doctors are always recommending stress-reduction strategies like yoga, better sleep hygiene, blood sugar stabilization diet strategies, and vitamin supplements that support adrenal balance.

It is refreshing to see a new technologic advancement that can help the many health problems exacerbated by autonomic imbalances. A simple and safe 5-minute transdermal COdelivery device has been shown to work immediately, and there is scientific proof that the physiologic effects continue for many hours. Scientific evidence is available that transdermal COdelivered by the D’OXYVA® device works through several mechanisms:

Reduces inflammation by reducing free radical plasma levels

Raises antioxidant levels and induces vasodilation (microcirculation) through humoral pathway communication

Decreased R-R heart rate interval variation

Activation of the PNS parasympathetic system, causing a vasodilation response

D’OXYVA® is a class 1 low-risk medical device using the natural properties of CO(a FDA-cleared drug) to activate our body’s chemoreceptors and increase organ blood flow through microcirculation while promoting oxygen delivery in capillary beds and organ tissue.

My name is Dr. Steve Pfeifer, and I am a consultant for Circularity and a retired functional medicine doctor. I am proud to be part of the Circularity scientific team that is partnering with clinicians to continue independent research regarding these benefits. More than two dozen research projects have been performed to test D’OXYVA® ‘s potential and safety, and much more are ongoing throughout the world. In fact, at the D’OXYVA® University here in Indianapolis, our doctors are studying the athletic enhancement potential in elite Indy Car race drivers and general athletes to document objective benefits with recovery and pulse oximeter readings reflecting perfusion indexes.

Posted on Leave a comment

Did you know that poor microcirculation can lead to chronic venous insufficiency?

Chronic venous insufficiency is a widespread disease of great socio-economic relevance. It is characterized by accompanying venous hypertension due to valvular dysfunction or valvular insufficiency. The high pressure in the calf veins is transmitted to small venules and skin capillaries. Characteristic symptoms are skin edema, trophic skin changes, lipodermatosclerosis, and finally venous ulcers.

These in essence microcirculation phenomena have attracted the interest of the researchers in the field of basic and clinical microcirculation. Functional and morphological changes in the microvasculature,microymphatics and the venous draining systems have been described, whose conjugated action might explain the development of chornic venous insufficiency, i.e. venous ulcers. Chronic venous insuffieciency has been particularly resistant to treatments. To counteract the high venous pressure, compression therapy has been used for many years. New develpoment includes vaso-active drugs with a preferential effect on the tone of veneous vessels and microvascular permeability. It appears that some of these drugs can restore the microvasculas and diminish leukocyte/endothelium interaction as well as micromolecular leakage.

Read whole book, here

HOW D’OXYVA CAN HELP?

D’OXYVA is the only fully noninvasive, completely painless transdermal (over-the-skin) microcirculatory solution that has been clinically tested to significantly improve microcirculation.

The improvement of microcirculation, i.e., blood flow to the smallest blood vessels, benefits one’s health, immune system and overall sense of well-being in a variety of ways.